Hierarchies of cofactor systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2002 J. Phys. A: Math. Gen. 35 L175
(http://iopscience.iop.org/0305-4470/35/12/104)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.106
The article was downloaded on 02/06/2010 at 09:59

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Hierarchies of cofactor systems

Peter Topalov
Universität Zürich, Institut für Mathematik, Winterthurerstrasse 190, 8057 Zürich, Switzerland and
Institute of Mathematics, BAS, Acad. G Bonchev Str., bl. 8, Sofia, 1113, Bulgaria

Received 29 October 2001, in final form 30 January 2002
Published 15 March 2002
Online at stacks.iop.org/JPhysA/35/L175

Abstract

We assign to any cofactor system a whole hierarchy of such systems. A sufficient condition for their complete integrability is given. The hierarchies admit construction of non-trivial integrable systems from trivial ones.

PACS numbers: 02.30.Ik, 45.20.Jj

In $[2,3]$ an interesting class of nonconservative Lagrangian systems called cofactor systems is considered. The cofactor systems naturally appear as a class of Lagrangian systems admitting quasi-Hamiltonian representation (see [2], also [4]). One of the main properties of these systems is that (under some additional assumptions) they admit involutive conservation laws. In this letter we give a necessary condition for the complete integrability of cofactor systems and assign to any of them a whole hierarchy of completely integrable cofactor systems. The construction of the hierarchies we propose is analogical to the construction of the geodesic hierarchies considered in $[1,8]$. The only difference here is that the present case admits the existence of external forces. Appearing naturally in Riemannian geometry, the geodesic hierarchies give a useful tool for obtaining non-trivial integrable systems from trivial ones [1,8]. The existence of hierarchies was a crucial point proving the commutative integrability of pseudo-Riemannian geodesically (projectively) equivalent metrics [1]. It seems that the construction of the geodesic hierarchies is connected not only to the class of the systems we consider but to a rather larger class of dynamical systems. It appears also that the subject has a long history connected with the names of Levi-Civita, Liouville, Painlevé, Weyl and many others (see [1]).

By definition, the cofactor systems are Lagrangian systems of the form

$$
\begin{equation*}
\frac{\partial T}{\partial q^{i}}(q, \dot{q})-\frac{\mathrm{d}}{\mathrm{~d} t} \frac{\partial T}{\partial \dot{q}^{i}}(q, \dot{q})=\mu_{i}(q) \tag{1}
\end{equation*}
$$

where the kinetic energy T is given by the quadratic form $T \stackrel{\text { def }}{=} \frac{1}{2} g_{i j}(q) \dot{q}^{i} \dot{q}^{j}\left(g_{i j}=g_{j i}\right)$ and the external forces μ depend only on the coordinates $q=\left(q^{1}, \ldots, q^{n}\right)$ of the configuration space. The metric tensor $g_{i j}=g_{i j}(q)$ is assumed to be non-degenerate only.

Definition 1. A Lagrangian system (1) is called a cofactor system iff there exists a nondegenerate self-adjoint with respect to the metric $g(1,1)$-type tensor field $A_{j}^{i} \neq \operatorname{const} \delta_{j}^{i}$ such that the metric tensor $g_{i j}$ and the 1 -form μ_{i} satisfy the following equations:

$$
\begin{align*}
& 2 \nabla_{k} a_{i j}=\alpha_{i} g_{j k}+\alpha_{j} g_{i k} \tag{2}\\
& \mu_{i}=\frac{1}{\operatorname{det} A} A_{i}^{k} \frac{\partial U}{\partial q^{k}} \tag{3}
\end{align*}
$$

where ∇ denotes the Levi-Civita connection corresponding to the metric $g, a_{i j} \stackrel{\text { def }}{=} g_{i k} A_{j}^{k}$, and U is a smooth function of the coordinates q.

Remark 1. Let us stress here that we do not assume that the metric tensor $g_{i j}$ is positive definite or that the operators $\left.A\right|_{q}: T_{q} M^{n} \rightarrow T_{q} M^{n}$ are diagonalizable.

Remark 2. It follows directly from equation (2) that the one-form α_{j} coincides with the differential of the function $\operatorname{tr} A=A_{i}^{i}$.

Further, we identify the cofactor systems with the triples (g, A, μ). All tensor fields we consider are C^{∞}-smooth on some smooth manifold M^{n}. Throughout the letter we use the Einstein summation convention.

A standard procedure assigns to a cofactor system (1) a dynamical system on the phase space $T M^{n}$ (the tangent bundle of M^{n}). In invariant terms, equation (1) can be rewritten in Newton form as $\frac{\nabla \dot{q}}{\mathrm{~d} t}(t)=-\vec{\mu}$, where ∇ denotes the Levi-Civita connection corresponding to the metric g and the vector field $\vec{\mu}$ has components μ^{i}. If the forces μ are conservative, i.e. $\mu=\mathrm{d} V$, then the cofactor systems coincide with the Euler-Lagrange equations corresponding to the Lagrangian function $L \stackrel{\text { def }}{=} \frac{1}{2} g_{i j} \dot{q}^{i} \dot{q}^{j}-V$. After applying the Legendre transformation corresponding to $L, p_{i} \stackrel{\text { def }}{=} g_{i k}(q) \dot{q}^{k}$, the cofactor systems take Hamiltonian form on $T^{*} M^{n}$ with Hamiltonian $H=\frac{1}{2} g^{i j}(q) p_{i} p_{j}+V$.

Examples of cofactor systems (projective hierarchy). Let $\left\{\left(q^{1}, \ldots, q^{n}\right)\right\}$ be the coordinates in \mathbb{R}^{n}. Fixing an integer $k \in \mathbb{Z}$, consider on the half-plane $\boldsymbol{H}_{+} \stackrel{\text { def }}{=}\left\{\bar{q} \in \mathbb{R}^{n} \mid q^{n}>0\right\}$ the quadratic form

$$
\begin{equation*}
d g_{k}^{2} \stackrel{\text { def }}{=}\left\langle\mathcal{E}(\mathcal{A E})^{k} \mathrm{~d} \bar{q}, \mathrm{~d} \bar{q}\right\rangle \tag{4}
\end{equation*}
$$

where \bar{q} denotes the row-vector $\bar{q} \stackrel{\text { def }}{=}\left(q^{1}, \ldots, q^{n}\right)$, the square matrices \mathcal{A} and \mathcal{E} are given by $\mathcal{A} \stackrel{\text { def }}{=} \bar{q}^{\prime} \bar{q}+\operatorname{diag}\left(\epsilon_{1} d_{1}, \ldots, \epsilon_{n-1} d_{n-1}, 0\right)\left(\bar{q}^{\prime}\right.$ denotes the transposition of $\left.\bar{q}\right), \mathcal{E} \stackrel{\text { def }}{=}$ $\operatorname{diag}\left(\epsilon_{1}, \ldots, \epsilon_{n}\right), \epsilon_{k}= \pm 1$ and $d_{i} \neq d_{j}(i \neq j)$ are fixed real constants. The brackets $\langle.,$. denote the standard Euclidean scalar product in \mathbb{R}^{n}. Denote by g_{k} the symmetric bilinear form corresponding to the quadratic form $d g_{k}^{2}$. Consider the (1, 1)-type tensor field $A \stackrel{\text { def }}{=} \mathcal{A E}$. The operator A is self-adjoint with respect to g_{k} and non-degenerate on \boldsymbol{H}_{+}. Taking $U \in C^{\infty}\left(\boldsymbol{H}_{+}\right)$, we derive μ_{i} from formula (3). The results proved in [1] section IV show that the triples (g_{k}, A, μ) are cofactor systems.

Remark 3. Indeed, it is proved in [1] (section IVA) that the metrics g_{k} and $d \bar{g}_{k}^{2} \stackrel{\text { def }}{=}$ $\frac{1}{q^{n 2}}\left\langle\mathcal{E}(\mathcal{A E})^{k-1} \mathrm{~d} \bar{q}, \mathrm{~d} \bar{q}\right\rangle$ are geodesically equivalent (see definition 1 in [1]). The operator A defined above coincides (up to a multiplication by a constant) with the operator $A\left(g_{k}, \bar{g}_{k}\right)$ given by formula (1) in [1]. Finally, lemma 1 in [1] (section IIA) shows that equation (2) from the definition of cofactor systems is satisfied.

Remark 4. The metric \bar{g}_{1} is a metric of constant negative curvature. Other examples of cofactor systems can be extracted in the same way from the results proved in [7, 8]. It appears that the metric of the standard ellipsoid (the motion of a free particle restricted on the surface of the ellipsoid) and the metric of the Poisson sphere (and its analogues: see [7]) give examples of cofactor systems.

It was pointed out in [2] section IV that, provided μ is fixed, equation (3) is locally solvable with respect to U iff $\mathrm{D}_{A} \mu=0$. The differential operator D_{A} acts on differential forms by the formula $\mathrm{D}_{A} \theta \stackrel{\text { def }}{=}(1 / \operatorname{det} A) \mathrm{d}_{A}((\operatorname{det} A) \theta)=\mathrm{d}_{A} \theta+\alpha \wedge \theta$. Here $\mathrm{d}_{A}: \Omega^{k}\left(M^{n}\right) \rightarrow \Omega^{k+1}\left(M^{n}\right)$ denotes a first-order derivation acting on the exterior algebra $\Omega^{*}\left(M^{n}\right)$ of scalar-valued differential forms and commuting with the exterior differential d: $\Omega^{k}\left(M^{n}\right) \rightarrow \Omega^{k+1}\left(M^{n}\right)$, i.e. we suppose that $\mathrm{d}_{A}\left(\omega_{1} \wedge \omega_{2}\right)=\left(\mathrm{d}_{A} \omega_{1}\right) \wedge \omega_{2}+(-1)^{\operatorname{deg} \omega_{1}} \omega_{1} \wedge \mathrm{~d}_{A} \omega_{2}$ and $\mathrm{dd}_{A}+\mathrm{d}_{A} \mathrm{~d}=0$. On smooth functions the 'differential' d_{A} acts by the formula $\mathrm{d}_{A} f=A^{*} \mathrm{~d} f$. The last three conditions define d_{A} uniquely. As mentioned in [2], equation (2) implies that the Nijenhuis torsion N_{A} vanishes. Therefore, $\mathrm{d}_{A}^{2}=0$ (see [5]).
Remark 5. Suppose that the (1, 1)-type tensor field J has vanishing Nijenhuis torsion $N_{J}=0$. It was proved in [5] that, provided J is non-degenerate on M^{n}, the derivation d_{J} satisfies the Poincaré lemma. Moreover, Willmore proved that the cohomologies $H_{J}^{*}\left(M^{n}\right)$ and $H^{*}\left(M^{n}\right)$ of the differential complexes $\left(\Omega^{*}\left(M^{n}\right), \mathrm{d}_{J}\right)$ and $\left(\Omega^{*}\left(M^{n}\right), \mathrm{d}\right)$ are isomorphic. The simple arguments used in [2] section IV show that D_{A} also satisfies the Poincaré lemma.

The aim of this letter is to prove the next theorem. Let k be an integer. Denote by $g^{(k)}$ the metric $g^{(k)}(X, Y) \stackrel{\text { def }}{=} g\left(A^{k} X, Y\right)$ (from now on we write simply $g^{(k)}=g A^{k}$).
Theorem 1. Suppose that the triple (g, A, μ) is a cofactor system. Then for every integer k the triple $\left(g^{(k)}, A, \mu\right)$ is a cofactor system as well.
Therefore, in this way, we obtain hierarchies of quasi-Hamiltonian systems from the given one (see [2] section III).
Proof of theorem 1. Equation (2) is the same as equation (8) in lemma 1 in [1] (we replace λ_{j} by $\alpha_{j} / 2$). It simply means that the metrics g and $\bar{g} \stackrel{\text { def }}{=}(1 / \operatorname{det} A) g A^{-1}$ are geodesically equivalent (see definition 1 in [1]). Consider the tensor field $A(g, \bar{g})$ given by formula (1) in [1]. A direct calculation shows that $A(g, \bar{g})=A$. Consider the geodesic hierarchy corresponding to the pair metrics g and \bar{g} (see section IIB in [1])

For every integer k the metrics $g^{(k)}$ and $\bar{g}^{(k)}$ are geodesically equivalent. It can be easily checked that $A\left(g^{(k)}, \bar{g}^{(k)}\right)=A$. Therefore, by lemma 1 in [1], the quadratic form $a^{(k)} \stackrel{\text { def }}{=} g^{(k)} A$ satisfies

$$
\begin{equation*}
2 \nabla_{p}^{(k)} a_{i j}^{(k)}=\alpha_{i} g_{j p}^{(k)}+\alpha_{j} g_{i p}^{(k)} \tag{5}
\end{equation*}
$$

where $\nabla^{(k)}$ is the Levi-Civita connection corresponding to the metric $g^{(k)}$. Finally, remark that equation (3) is independent of the choice of the metric. This completes the proof of theorem 1.

Following [1] we give the next definition.

Definition 2. The sequence $\left(g^{(k)}, A, \mu\right), k \in \mathbb{Z}$, is called geodesic hierarchy of cofactor systems corresponding to the cofactor system (g, A, μ).

Combining the results of section VII in [2] and section IIIB in [1] we obtain the next corollary. Suppose that the manifold M^{n} is connected and let its first cohomology group vanish, i.e. $H^{1}\left(M^{n}\right) \cong 0$.

Theorem 2. Let (g, A, μ) be a cofactor system on M^{n} where $\mu=\mathrm{d} V$ is the differential of a smooth function $V \in C^{\infty}\left(M^{n}\right)$. Suppose that there exists a point $q_{0} \in M^{n}$ where the degree of the minimal polynomial of the operator $\left.A\right|_{q_{0}}$ is n. Then for every integer $k \in \mathbb{Z}$ the system ($\left.g^{(k)}, A, \mu\right)$ is completely integrable.

Therefore, having a 'potential' cofactor system $(\mu=\mathrm{d} V)$, we obtain a whole hierarchy of completely integrable systems.
Remark 6. The condition $H^{1}\left(M^{n}\right) \cong 0$ assumed in theorem 2 can be replaced by the condition that for every fixed real constant c the integrals $\int_{[\gamma] \in H_{1}\left(M^{n}\right)} \mu_{c}$ vanish. Here $\mu_{c} \stackrel{\text { def }}{=} \operatorname{det}(A+c \mathbf{1})(A+c \mathbf{1})^{-1^{*}} \mu$ and $\mathbf{1}$ is the identity endomorphism on $T M^{n}$.
Remark 7. To prove the Liouville integrability of the systems considered in theorem 2 we do not need the strong condition that the eigenvalues of A are functionally independent. It is sufficient to assume only that there exists a point $q_{0} \in M^{n}$ where the degree of the minimal polynomial of $\left.A\right|_{q_{0}}$ is n. We do not assume that the operators $\left.A\right|_{q}$ are diagonalizable. In the case of diagonalizable $\left.A\right|_{q}$ a weaker statement, based on the Benenti theory of orthogonal separation of the variables, is formulated in [10].
Remark 8. Suppose that only the metric g is given. To apply theorem 2 we need to find a cofactor system (g, A, μ) such that $\mu=\mathrm{d} V$ and the degree of the minimal polynomial of $\left.A\right|_{q_{0}}\left(q_{0}\right.$ is some fixed point on $\left.M^{n}\right)$ is n. It can be easily seen that the solutions $a_{i j}$ (and A_{j}^{i}) of equation (2) form a linear space $\mathcal{G}(g)$ (called the geodesic class of the metric g). Lemma 1 in [1] assigns to any non-degenerate $A \in \mathcal{G}(g)$ a metric $\bar{g} \stackrel{\text { def }}{=}(1 / \operatorname{det} A) g A^{-1}$ that has the same unparametrized geodesics as g. Hence, the condition of complete integrability proposed in theorem 2 can be interpreted as the condition of the existence of a 'maximally non-proportional' with respect to $T \stackrel{\text { def }}{=} \frac{1}{2} g_{i j}(q) \dot{q}^{i} \dot{q}^{j}$ kinetic energy $\bar{T} \stackrel{\text { def }}{=} \frac{1}{2} \bar{g}_{i j}(q) \dot{q}^{i} \dot{q}^{j}$, that leads to the same (unparametrized) free motion on the configuration space as T.
Proof of theorem 2. Fixing an integer k, consider the cofactor system ($g^{(k)}, A, \mu$). It follows from the definition of cofactor systems that $\mathrm{D}_{A} \mu=0$. It is clear that $D_{1} \mu=\mathrm{d} \mu=0$. It can be easily seen that the condition $D_{A+c 1} \mu=0\left(D_{A+c}=\mathrm{D}_{A}+c d\right)$ implies that the forms $\mu_{c}=\operatorname{det}(A+c \mathbf{1})(A+c \mathbf{1})^{-1^{*}} \mu=\mu_{n-1} c^{n-1}+\cdots+\mu_{0}$ are closed for every value of the real parameter c. Indeed, let us fix a point $x \in M^{n}$ and take an arbitrary $c(|c|>N>0)$ such that the operator $A+c \mathbf{1}$ is non-degenerate in an open neighborhood $U(q)$ of q. The Poincaré lemma for the operator $D_{A+c 1}$ (see remark 5) gives that there exist an open neighbourhood $U^{\prime}(q) \subset U(q)$ of the point q and a smooth function $\kappa \in C^{\infty}\left(U^{\prime}(q)\right)$ such that $D_{A+c 1} \kappa=\mu$. The last equation is equivalent to the equation $\mathrm{d} \kappa^{\prime}=\operatorname{det}(A+c \mathbf{1})(A+c \mathbf{1})^{-1^{*}} \mu$, where $\kappa^{\prime} \stackrel{\operatorname{def}}{=} \operatorname{det}(A+c \mathbf{1}) \kappa$. Hence, if $|c|>N$ then μ_{c} is closed. This implies that any of the forms $\mu_{n-1}=\mu, \mu_{n-2}, \ldots, \mu_{0}$ is closed. The condition $H^{1}\left(M^{n}\right) \cong 0$ simply means that there exist smooth functions $V_{n-1}=V, V_{n-2}, \ldots, V_{0} \in C^{\infty}\left(M^{n}\right)$ such that $\mathrm{d} V_{k}=\mu_{k}(k=0, \ldots, n-1)$. Taking $V(c) \stackrel{\text { def }}{=} V_{n-1} c^{n-1}+\cdots+V_{0}$, we obtain that $\mathrm{d} V(c)=\mu_{c}$. Applying theorem 4, section VII, in [2] to the cofactor system $\left(g^{(k)}, A, \mu\right)$, we obtain that the one-parameter family of functions

$$
\begin{align*}
H_{c}^{(k)}(p) & \stackrel{\operatorname{def}}{=} \frac{1}{2}\left\langle\operatorname{det}(A+c \mathbf{1})(A+c \mathbf{1})^{-1} A^{-k} g^{-1} p, p\right\rangle+V(c) \\
& =I_{n-1}^{(k)}(p) c^{n-1}+\cdots+I_{0}^{(k)}(p), \quad p \in T^{*} M^{n} \tag{6}
\end{align*}
$$

are integrals in involution of the cofactor system $\left(g^{(k)}, A, \mu\right)$. The symbol g^{-1} denotes the inverse to the Legendre transformation corresponding to the metric g and the bracket $\langle.,$. denotes the canonical pairing between $T M^{n}$ and $T^{*} M^{n}$.
Remark 9. The coefficient $I_{n-1}^{(k)}(p)=\frac{1}{2}\left\langle A^{-k} g^{-1} p, p\right\rangle+V, p \in T^{*} M^{n}$, is a Hamiltonian of the cofactor system $\left(g^{(k)}, A, \mu\right)$.
Finally, let us prove that the integrals $I_{n-1}^{(k)}, \ldots, I_{0}^{(k)}$ are functionally independent. As we have seen the metrics $g^{(k)}$ and $\bar{g}^{(k)}$ are geodesically equivalent and $A\left(g^{(k)}, \bar{g}^{(k)}\right)=A$. By definition, the rank of the geodesic equivalence $r=r\left(g^{(k)}, \bar{g}^{(k)}\right)$ coincides with the number $\max _{q \in M^{n}} r_{A}(q)$ where $r_{A}(q)$ denotes the degree of the minimal polynomial of the operator $\left.A\right|_{q}$. Hence, $r=n$. Remark 3 in [1] shows that the set of points $q \in M^{n}$ where $r_{A}(q)=n$ is open and dense in M^{n}. Let us fix a point q where $r_{A}(q)=n$. Proposition 3 and item (2) of lemma 2 (both in [1], section IIIB) give that the restrictions $\left.I_{n-1}^{(k)}\right|_{T_{q} M^{n}}, \ldots,\left.I_{0}^{(k)}\right|_{T_{q} M^{n}}$ are functionally independent on the fibre $T_{q} M^{n} \hookrightarrow T M^{n}$. This completes the proof of theorem 2.

The author is partially supported by MESC grants nos MM-810/98 and MM-1003/00.

References

[1] Topalov P 2001 Geodesic hierarchies and involutivity J. Math. Phys. 42
[2] Crampin M and Sarlet W 2001 A class of nonconservative Lagrangian systems on Riemannian manifolds J. Math. Phys. 42
[3] Crampin M, Sarlet W and Thompson G 2000 Bi-differential calculi, bi-Hamiltonian systems and conformal Killing tensors J. Phys. A: Math. Gen. 33 8755-70
[4] Ibort A, Magri F and Marmo G 2000 Bi-Hamiltonian structures and Stäckel separability J. Geom. Phys. 33 210-28
[5] Willmore T 1962 The Poincaré lemma associated with certain derivations J. Lond. Math. Soc. 37 345-50
[6] Matveev V S and Topalov P J 1998 Trajectory equivalence and corresponding integrals Regular Chaot. Dynam. no 2 30-45
[7] Topalov P 2000 Families of metrics geodesically equivalent to the analogs of the Poisson sphere J. Math. Phys. 41
[8] Topalov P 2000 Hierarchy of integrable geodesic flows Publ. Mat. 44 257-76
[9] Sinyukov N S 1961 An invariant transformation of Riemannian manifolds with common geodesics Sov. Math.Dokl. 137 1312-14
[10] Bolsinov A and Matveev V 2001 Geometric interpretations of Benenti systems Preprint

