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Abstract
We assign to any cofactor system a whole hierarchy of such systems. A
sufficient condition for their complete integrability is given. The hierarchies
admit construction of non-trivial integrable systems from trivial ones.

PACS numbers: 02.30.Ik, 45.20.Jj

In [2,3] an interesting class of nonconservative Lagrangian systems called cofactor systems is
considered. The cofactor systems naturally appear as a class of Lagrangian systems admitting
quasi-Hamiltonian representation (see [2], also [4]). One of the main properties of these
systems is that (under some additional assumptions) they admit involutive conservation laws.
In this letter we give a necessary condition for the complete integrability of cofactor systems
and assign to any of them a whole hierarchy of completely integrable cofactor systems. The
construction of the hierarchies we propose is analogical to the construction of the geodesic
hierarchies considered in [1, 8]. The only difference here is that the present case admits
the existence of external forces. Appearing naturally in Riemannian geometry, the geodesic
hierarchies give a useful tool for obtaining non-trivial integrable systems from trivial ones [1,8].
The existence of hierarchies was a crucial point proving the commutative integrability of
pseudo-Riemannian geodesically (projectively) equivalent metrics [1]. It seems that the
construction of the geodesic hierarchies is connected not only to the class of the systems
we consider but to a rather larger class of dynamical systems. It appears also that the subject
has a long history connected with the names of Levi-Civita, Liouville, Painlevé, Weyl and
many others (see [1]).

By definition, the cofactor systems are Lagrangian systems of the form

∂T

∂qi
(q, q̇)− d

dt

∂T

∂q̇i
(q, q̇) = µi(q), (1)

where the kinetic energy T is given by the quadratic form T
def= 1

2gij (q)q̇
i q̇j (gij = gji) and

the external forces µ depend only on the coordinates q = (q1, . . . , qn) of the configuration
space. The metric tensor gij = gij (q) is assumed to be non-degenerate only.
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Definition 1. A Lagrangian system (1) is called a cofactor system iff there exists a non-
degenerate self-adjoint with respect to the metric g (1, 1)-type tensor field Aij �= const δij
such that the metric tensor gij and the 1-form µi satisfy the following equations:

2∇kaij = αigjk + αjgik (2)

µi = 1

detA
Aki

∂U

∂qk
(3)

where ∇ denotes the Levi-Civita connection corresponding to the metric g, aij
def= gikA

k
j , and

U is a smooth function of the coordinates q.

Remark 1. Let us stress here that we do not assume that the metric tensor gij is positive
definite or that the operators A|q : TqMn→ TqM

n are diagonalizable.

Remark 2. It follows directly from equation (2) that the one-form αj coincides with the
differential of the function trA = Aii .
Further, we identify the cofactor systems with the triples (g,A,µ). All tensor fields we
consider are C∞-smooth on some smooth manifold Mn. Throughout the letter we use the
Einstein summation convention.

A standard procedure assigns to a cofactor system (1) a dynamical system on the phase
space TMn (the tangent bundle of Mn). In invariant terms, equation (1) can be rewritten in
Newton form as ∇q̇dt (t) = −�µ, where ∇ denotes the Levi-Civita connection corresponding to
the metric g and the vector field �µ has components µi . If the forces µ are conservative, i.e.
µ = dV , then the cofactor systems coincide with the Euler–Lagrange equations corresponding

to the Lagrangian function L
def= 1

2gij q̇
i q̇j − V . After applying the Legendre transformation

corresponding to L, pi
def= gik(q)q̇

k , the cofactor systems take Hamiltonian form on T ∗Mn

with Hamiltonian H = 1
2g

ij (q)pipj + V .

Examples of cofactor systems (projective hierarchy). Let {(q1, . . . , qn)} be the coordinates

in R
n. Fixing an integer k ∈ Z, consider on the half-plane H+

def= {q̄ ∈ R
n|qn > 0} the

quadratic form

dg2
k

def= 〈E(AE)k dq̄, dq̄〉, (4)

where q̄ denotes the row-vector q̄
def= (q1, . . . , qn), the square matrices A and E are

given by A def= q̄ ′q̄ + diag(ε1d1, . . . , εn−1dn−1, 0) (q̄ ′ denotes the transposition of q̄), E def=
diag(ε1, . . . , εn), εk = ±1 and di �= dj (i �= j) are fixed real constants. The brackets 〈., .〉
denote the standard Euclidean scalar product in R

n. Denote by gk the symmetric bilinear form

corresponding to the quadratic form dg2
k . Consider the (1, 1)-type tensor field A

def= AE . The
operatorA is self-adjoint with respect to gk and non-degenerate on H+. TakingU ∈ C∞(H+),
we derive µi from formula (3). The results proved in [1] section IV show that the triples
(gk, A,µ) are cofactor systems.

Remark 3. Indeed, it is proved in [1] (section IVA) that the metrics gk and dḡ2
k

def=
1
qn2 〈E(AE)k−1 dq̄, dq̄〉 are geodesically equivalent (see definition 1 in [1]). The operator A
defined above coincides (up to a multiplication by a constant) with the operator A(gk, ḡk)
given by formula (1) in [1]. Finally, lemma 1 in [1] (section IIA) shows that equation (2) from
the definition of cofactor systems is satisfied.
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Remark 4. The metric ḡ1 is a metric of constant negative curvature. Other examples of
cofactor systems can be extracted in the same way from the results proved in [7,8]. It appears
that the metric of the standard ellipsoid (the motion of a free particle restricted on the surface
of the ellipsoid) and the metric of the Poisson sphere (and its analogues: see [7]) give examples
of cofactor systems.

It was pointed out in [2] section IV that, providedµ is fixed, equation (3) is locally solvable
with respect to U iff DAµ = 0. The differential operator DA acts on differential forms by the

formula DAθ
def= (1/ detA) dA((detA)θ) = dAθ + α ∧ θ . Here dA : �k(Mn) → �k+1(Mn)

denotes a first-order derivation acting on the exterior algebra �∗(Mn) of scalar-valued
differential forms and commuting with the exterior differential d : �k(Mn) → �k+1(Mn),
i.e. we suppose that dA(ω1 ∧ ω2) = (dAω1) ∧ ω2 + (−1)degω1ω1 ∧ dAω2 and ddA + dAd = 0.
On smooth functions the ‘differential’ dA acts by the formula dAf = A∗ df . The last three
conditions define dA uniquely. As mentioned in [2], equation (2) implies that the Nijenhuis
torsion NA vanishes. Therefore, d2

A = 0 (see [5]).

Remark 5. Suppose that the (1, 1)-type tensor field J has vanishing Nijenhuis torsionNJ = 0.
It was proved in [5] that, provided J is non-degenerate on Mn, the derivation dJ satisfies the
Poincaré lemma. Moreover, Willmore proved that the cohomologies H ∗J (M

n) and H ∗(Mn)

of the differential complexes (�∗(Mn), dJ ) and (�∗(Mn), d) are isomorphic. The simple
arguments used in [2] section IV show that DA also satisfies the Poincaré lemma.

The aim of this letter is to prove the next theorem. Let k be an integer. Denote by g(k) the

metric g(k)(X, Y )
def= g(AkX, Y ) (from now on we write simply g(k) = gAk).

Theorem 1. Suppose that the triple (g,A,µ) is a cofactor system. Then for every integer k
the triple (g(k), A,µ) is a cofactor system as well.

Therefore, in this way, we obtain hierarchies of quasi-Hamiltonian systems from the given one
(see [2] section III).

Proof of theorem 1. Equation (2) is the same as equation (8) in lemma 1 in [1] (we replace

λj by αj/2). It simply means that the metrics g and ḡ
def= (1/ detA)gA−1 are geodesically

equivalent (see definition 1 in [1]). Consider the tensor fieldA(g, ḡ) given by formula (1) in [1].
A direct calculation shows that A(g, ḡ) = A. Consider the geodesic hierarchy corresponding
to the pair metrics g and ḡ (see section IIB in [1])

↓ ↓
g(−1) g.e.←→ ḡ(−1)

↓ ↓
g

g.e.←→ ḡ

↓ ↓
g(1)

g.e.←→ ḡ(1)

↓ ↓
For every integer k the metrics g(k) and ḡ(k) are geodesically equivalent. It can be easily checked

thatA(g(k), ḡ(k)) = A. Therefore, by lemma 1 in [1], the quadratic form a(k)
def= g(k)A satisfies

2∇(k)p a
(k)
ij = αig(k)jp + αjg

(k)
ip , (5)

where∇(k) is the Levi-Civita connection corresponding to the metric g(k). Finally, remark that
equation (3) is independent of the choice of the metric. This completes the proof of theorem 1.

Following [1] we give the next definition.
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Definition 2. The sequence (g(k), A,µ), k ∈ Z, is called geodesic hierarchy of cofactor
systems corresponding to the cofactor system (g,A,µ).

Combining the results of section VII in [2] and section IIIB in [1] we obtain the next
corollary. Suppose that the manifold Mn is connected and let its first cohomology group
vanish, i.e. H 1(Mn) ∼= 0.

Theorem 2. Let (g,A,µ) be a cofactor system on Mn where µ = dV is the differential of a
smooth function V ∈ C∞(Mn). Suppose that there exists a point q0 ∈ Mn where the degree
of the minimal polynomial of the operator A|q0 is n. Then for every integer k ∈ Z the system
(g(k), A,µ) is completely integrable.

Therefore, having a ‘potential’ cofactor system (µ = dV ), we obtain a whole hierarchy of
completely integrable systems.

Remark 6. The condition H 1(Mn) ∼= 0 assumed in theorem 2 can be replaced by the
condition that for every fixed real constant c the integrals

∫
[γ ]∈H1(Mn)

µc vanish. Here

µc
def= det(A + c1)(A + c1)−1∗µ and 1 is the identity endomorphism on TMn.

Remark 7. To prove the Liouville integrability of the systems considered in theorem 2 we
do not need the strong condition that the eigenvalues of A are functionally independent. It is
sufficient to assume only that there exists a point q0 ∈ Mn where the degree of the minimal
polynomial of A|q0 is n. We do not assume that the operators A|q are diagonalizable. In the
case of diagonalizable A|q a weaker statement, based on the Benenti theory of orthogonal
separation of the variables, is formulated in [10].
Remark 8. Suppose that only the metric g is given. To apply theorem 2 we need to find a
cofactor system (g,A,µ) such that µ = dV and the degree of the minimal polynomial of
A|q0 (q0 is some fixed point on Mn) is n. It can be easily seen that the solutions aij (and
Aij ) of equation (2) form a linear space G(g) (called the geodesic class of the metric g).

Lemma 1 in [1] assigns to any non-degenerate A ∈ G(g) a metric ḡ
def= (1/ detA)gA−1 that

has the same unparametrized geodesics as g. Hence, the condition of complete integrability
proposed in theorem 2 can be interpreted as the condition of the existence of a ‘maximally

non-proportional’ with respect to T
def= 1

2gij (q)q̇
i q̇j kinetic energy T̄

def= 1
2 ḡij (q)q̇

i q̇j , that
leads to the same (unparametrized) free motion on the configuration space as T .

Proof of theorem 2. Fixing an integer k, consider the cofactor system (g(k), A,µ). It follows
from the definition of cofactor systems that DAµ = 0. It is clear that D1µ = dµ = 0. It
can be easily seen that the condition DA+c1µ = 0 (DA+c = DA + cd) implies that the forms
µc = det(A + c1)(A + c1)−1∗µ = µn−1c

n−1 + · · · + µ0 are closed for every value of the real
parameter c. Indeed, let us fix a pointx ∈ Mn and take an arbitrary c (|c| > N > 0) such that the
operatorA+c1 is non-degenerate in an open neighborhoodU(q) of q. The Poincaré lemma for
the operatorDA+c1 (see remark 5) gives that there exist an open neighbourhoodU ′(q) ⊂ U(q)
of the point q and a smooth function κ ∈ C∞(U ′(q)) such thatDA+c1κ = µ. The last equation

is equivalent to the equation dκ ′ = det(A+c1)(A + c1)−1∗µ, where κ ′ def= det(A+c1)κ . Hence,
if |c| > N then µc is closed. This implies that any of the forms µn−1 = µ,µn−2, . . . , µ0

is closed. The condition H 1(Mn) ∼= 0 simply means that there exist smooth functions
Vn−1 = V, Vn−2, . . . , V0 ∈ C∞(Mn) such that dVk = µk (k = 0, . . . , n − 1). Taking

V (c)
def= Vn−1c

n−1 + · · · + V0, we obtain that dV (c) = µc. Applying theorem 4, section VII,
in [2] to the cofactor system (g(k), A,µ), we obtain that the one-parameter family of functions

H(k)
c (p)

def= 1
2 〈det(A + c1)(A + c1)−1A−kg−1p, p〉 + V (c)

= I (k)n−1(p)c
n−1 + · · · + I (k)0 (p), p ∈ T ∗Mn (6)
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are integrals in involution of the cofactor system (g(k), A,µ). The symbol g−1 denotes the
inverse to the Legendre transformation corresponding to the metric g and the bracket 〈., .〉
denotes the canonical pairing between TMn and T ∗Mn.

Remark 9. The coefficient I (k)n−1(p) = 1
2 〈A−kg−1p, p〉 + V , p ∈ T ∗Mn, is a Hamiltonian of

the cofactor system (g(k), A,µ).

Finally, let us prove that the integrals I (k)n−1, . . . , I
(k)
0 are functionally independent. As we

have seen the metrics g(k) and ḡ(k) are geodesically equivalent and A(g(k), ḡ(k)) = A. By
definition, the rank of the geodesic equivalence r = r(g(k), ḡ(k)) coincides with the number
maxq∈Mn rA(q)where rA(q) denotes the degree of the minimal polynomial of the operatorA|q .
Hence, r = n. Remark 3 in [1] shows that the set of points q ∈ Mn where rA(q) = n is open
and dense inMn. Let us fix a point q where rA(q) = n. Proposition 3 and item (2) of lemma 2
(both in [1], section IIIB) give that the restrictions I (k)n−1|TqMn, . . . , I

(k)
0 |TqMn are functionally

independent on the fibre TqMn ↪→ TMn. This completes the proof of theorem 2. �

The author is partially supported by MESC grants nos MM-810/98 and MM-1003/00.
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210–28
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