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Abstract

We assign to any cofactor system a whole hierarchy of such systems. A
sufficient condition for their complete integrability is given. The hierarchies
admit construction of non-trivial integrable systems from trivial ones.

PACS numbers: 02.30.1k, 45.20.]j

In [2,3] an interesting class of nonconservative Lagrangian systems called cofactor systems is
considered. The cofactor systems naturally appear as a class of Lagrangian systems admitting
quasi-Hamiltonian representation (see [2], also [4]). One of the main properties of these
systems is that (under some additional assumptions) they admit involutive conservation laws.
In this letter we give a necessary condition for the complete integrability of cofactor systems
and assign to any of them a whole hierarchy of completely integrable cofactor systems. The
construction of the hierarchies we propose is analogical to the construction of the geodesic
hierarchies considered in [1, 8]. The only difference here is that the present case admits
the existence of external forces. Appearing naturally in Riemannian geometry, the geodesic
hierarchies give a useful tool for obtaining non-trivial integrable systems from trivial ones [1,8].
The existence of hierarchies was a crucial point proving the commutative integrability of
pseudo-Riemannian geodesically (projectively) equivalent metrics [1]. It seems that the
construction of the geodesic hierarchies is connected not only to the class of the systems
we consider but to a rather larger class of dynamical systems. It appears also that the subject
has a long history connected with the names of Levi-Civita, Liouville, Painlevé, Weyl and
many others (see [1]).
By definition, the cofactor systems are Lagrangian systems of the form

oT d oT

a—qi(q,é)—aa—qi(q,@:m(q), ey

where the kinetic energy T is given by the quadratic form T’ o %gi i(@)4q'q’ (gij = gji) and
the external forces 1 depend only on the coordinates ¢ = (¢!, ..., ¢") of the configuration
space. The metric tensor g;; = g;;(q) is assumed to be non-degenerate only.
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Definition 1. A Lagrangian system (1) is called a cofactor system iff there exists a non-
degenerate self-adjoint with respect to the metric g (1, 1)-type tensor field A'; # const )
such that the metric tensor g;; and the 1-form ; satisfy the following equations:

2Viaij = aigjrx + o gik 2)
wi = 1 ’Fﬂ 3)
" detAT ! agk

e . . . def
where V denotes the Levi-Civita connection corresponding to the metric g, a;; = gikA’j‘-, and
U is a smooth function of the coordinates q.

Remark 1. Let us stress here that we do not assume that the metric tensor g;; is positive
definite or that the operators Al, : T, M" — T, M" are diagonalizable.

Remark 2. It follows directly from equation (2) that the one-form o; coincides with the
differential of the function tr A = Al

Further, we identify the cofactor systems with the triples (g, A, ). All tensor fields we
consider are C*°-smooth on some smooth manifold M”. Throughout the letter we use the
Einstein summation convention.

A standard procedure assigns to a cofactor system (1) a dynamical system on the phase
space T M" (the tangent bundle of M"). In invariant terms, equation (1) can be rewritten in
Newton form as %(t) = —[i, where V denotes the Levi-Civita connection corresponding to
the metric g and the vector field ji has components ', If the forces u are conservative, i.e.
n = dV, then the cofactor systems coincide with the Euler—Lagrange equations corresponding

to the Lagrangian function L et % 8ij4'q’ — V. After applying the Legendre transformation

corresponding to L, p; &ef gix(q)g*, the cofactor systems take Hamiltonian form on 7*M"
with Hamiltonian H = 3g"(q)pip; + V.

Examples of cofactor systems (projective hierarchy). Let {(q', ..., q")} be the coordinates

in R". Fixing an integer k € Z, consider on the half-plane H, o {g € R"|g" > 0} the
quadratic form

dg? & (£(A8)* g, dg), )

_ _ def .
where ¢ denotes the row-vector § = (q',...,q"), the square matrices A and &£ are

given by A & q'q + diag(eidy, ..., €,-1d,—1,0) (g’ denotes the transposition of g), £ &

diag(ey, ..., €,), ¢ = £l and d; # d; (i # j) are fixed real constants. The brackets (., .)

denote the standard Euclidean scalar product in R”. Denote by g; the symmetric bilinear form

corresponding to the quadratic form dgi. Consider the (1, 1)-type tensor field A & AS. The

operator A is self-adjoint with respect to g; and non-degenerate on H,. Taking U € C*(H,),
we derive u; from formula (3). The results proved in [1] section IV show that the triples
(gk, A, n) are cofactor systems.

Remark 3. Indeed, it is proved in [1] (section IVA) that the metrics g; and d g,f def
q,%(é’ (AE)F1dg, dg) are geodesically equivalent (see definition 1 in [1]). The operator A
defined above coincides (up to a multiplication by a constant) with the operator A(gg, gx)
given by formula (1) in [1]. Finally, lemma 1 in [1] (section IIA) shows that equation (2) from
the definition of cofactor systems is satisfied.
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Remark 4. The metric g; is a metric of constant negative curvature. Other examples of
cofactor systems can be extracted in the same way from the results proved in [7,8]. It appears
that the metric of the standard ellipsoid (the motion of a free particle restricted on the surface
of the ellipsoid) and the metric of the Poisson sphere (and its analogues: see [7]) give examples
of cofactor systems.

It was pointed out in [2] section IV that, provided p is fixed, equation (3) is locally solvable
with respect to U iff D4 = 0. The differential operator D4 acts on differential forms by the
formula D46 & (1/det A)yds((det A)O) = du0 +a A 6. Here dy : QK (M™) — QK1(M™)
denotes a first-order derivation acting on the exterior algebra Q*(M") of scalar-valued
differential forms and commuting with the exterior differential d : Qf(M") — Q¥ (M™),
i.e. we suppose that d4 (w; A @2) = (daw1) A wy + (=1)¥8 0w A dgw, and ddy +dad = 0.
On smooth functions the ‘differential’ d4 acts by the formula d4 f = A*d f. The last three
conditions define d4 uniquely. As mentioned in [2], equation (2) implies that the Nijenhuis
torsion N4 vanishes. Therefore, dﬁ = 0 (see [5]).

Remark 5. Suppose thatthe (1, 1)-type tensor field J has vanishing Nijenhuis torsion N; = 0.
It was proved in [5] that, provided J is non-degenerate on M", the derivation d; satisfies the
Poincaré lemma. Moreover, Willmore proved that the cohomologies H7(M") and H*(M")
of the differential complexes (2*(M"),d;) and (2*(M"), d) are isomorphic. The simple
arguments used in [2] section IV show that D4 also satisfies the Poincaré lemma.

The aim of this letter is to prove the next theorem. Let k be an integer. Denote by g the

metric g® (X, Y) &ef g(A*X, Y) (from now on we write simply g®) = gA*).

Theorem 1. Suppose that the triple (g, A, () is a cofactor system. Then for every integer k
the triple (g®, A, 1) is a cofactor system as well.

Therefore, in this way, we obtain hierarchies of quasi-Hamiltonian systems from the given one
(see [2] section III).

Proof of theorem 1. Equation (2) is the same as equation (8) in lemma 1 in [1] (we replace
Aj by aj/2). It simply means that the metrics g and g &t (1/det A)gA~" are geodesically
equivalent (see definition 1 in[1]). Consider the tensor field A(g, g) given by formula (1)in[1].
A direct calculation shows that A(g, g) = A. Consider the geodesic hierarchy corresponding
to the pair metrics g and g (see section IIB in [1])

) \
— g-e. —(—
gt &S D
\ \

g.e. —
8 A 8
\ \

g.e. —
g &S G0
\ \

For every integer k the metrics g® and g®) are geodesically equivalent. It can be easily checked

that A(g®, ) = A. Therefore, by lemma 1 in [1], the quadratic form a® % ¢® A satisfies
ZV;k)a;f) = otig;];) + ajgl-(llj), (5)

where V® is the Levi-Civita connection corresponding to the metric g®. Finally, remark that
equation (3) is independent of the choice of the metric. This completes the proof of theorem 1.

Following [1] we give the next definition.



L178 Letter to the Editor

Definition 2. The sequence (g, A, u), k € 7Z, is called geodesic hierarchy of cofactor
systems corresponding to the cofactor system (g, A, |1).

Combining the results of section VII in [2] and section IIIB in [1] we obtain the next
corollary. Suppose that the manifold M" is connected and let its first cohomology group
vanish, i.e. H'(M") = 0.

Theorem 2. Let (g, A, 0) be a cofactor system on M" where u = dV is the differential of a
smooth function V.€ C*°(M"). Suppose that there exists a point qy € M" where the degree
of the minimal polynomial of the operator Al,, is n. Then for every integer k € Z the system
(g™, A, ) is completely integrable.

Therefore, having a ‘potential’ cofactor system (u = dV'), we obtain a whole hierarchy of
completely integrable systems.

Remark 6. The condition H'(M") = 0 assumed in theorem 2 can be replaced by the

condition that for every fixed real constant c¢ the integrals flyl e, () Me vanish. Here

e o det(A +c1)(A + 1) and 1 is the identity endomorphism on 7 M".

Remark 7. To prove the Liouville integrability of the systems considered in theorem 2 we
do not need the strong condition that the eigenvalues of A are functionally independent. It is
sufficient to assume only that there exists a point go € M" where the degree of the minimal
polynomial of A|,, is n. We do not assume that the operators A|, are diagonalizable. In the
case of diagonalizable A|, a weaker statement, based on the Benenti theory of orthogonal
separation of the variables, is formulated in [10].

Remark 8. Suppose that only the metric g is given. To apply theorem 2 we need to find a
cofactor system (g, A, i) such that 4 = dV and the degree of the minimal polynomial of
Alg, (go is some fixed point on M") is n. It can be easily seen that the solutions a;; (and
A;) of equation (2) form a linear space G(g) (called the geodesic class of the metric g).

Lemma 1 in [1] assigns to any non-degenerate A € G(g) a metric g &f (1/det A)gA~! that
has the same unparametrized geodesics as g. Hence, the condition of complete integrability
proposed in theorem 2 can be interpreted as the condition of the existence of a ‘maximally
non-proportional’ with respect to T &f 18i7(q)¢'¢’ kinetic energy T & 38ij(q)q'q’, that
leads to the same (unparametrized) free motion on the configuration space as 7.

Proof of theorem 2. Fixing an integer k, consider the cofactor system (g, A, 11). It follows
from the definition of cofactor systems that Dyu = 0. It is clear that Dy = dpu = 0. It
can be easily seen that the condition Dyt = 0 (Date = Dy + cd) implies that the forms
e = det(A + c1)(A+ )™ = w11 + - + o are closed for every value of the real
parameter c. Indeed, letus fixapointx € M" and take an arbitrary ¢ (|c| > N > 0)suchthatthe
operator A+c1 is non-degenerate in an open neighborhood U (¢) of g. The Poincaré lemma for
the operator D 4.1 (see remark 5) gives that there exist an open neighbourhood U'(g) C U (¢)
of the point ¢ and a smooth function k € C*°(U’(q)) such that D 4,1k = p. The last equation

is equivalent to the equation d«’ = det(A+c1)(A + c1)~"" i, where k’ o det(A+c1)x. Hence,

if |c| > N then p. is closed. This implies that any of the forms u,—1 = u, wy—2, ..., o
is closed. The condition H'(M") = 0 simply means that there exist smooth functions
Vit = V, Vg, oo, Vo € C®°(M™) such that dV, = uy (k = 0,...,n — 1). Taking

V(c) o Vu_1c" ' 4+ ...+ V,, we obtain that dV (¢) = .. Applying theorem 4, section VII,

in [2] to the cofactor system (g(k) , A, i), we obtain that the one-parameter family of functions

HO(p) & Tdet(A+c)(A+c)'A g p, p)+ V(o)

=1® (" 1P (), peT*M" (6)
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are integrals in involution of the cofactor system (g®, A, u). The symbol g~! denotes the
inverse to the Legendre transformation corresponding to the metric g and the bracket (., .)
denotes the canonical pairing between T M" and T*M".

Remark 9. The coefficient I,ili)l(p) = %(A’kg’lp, p)+V,p e T*M",is a Hamiltonian of
the cofactor system (g©, A, ).

Finally, let us prove that the integrals I,Ek_)l, cee, Iék) are functionally independent. As we

have seen the metrics g® and g® are geodesically equivalent and A(g®, g®) = A. By
definition, the rank of the geodesic equivalence r = r(g®, g®) coincides with the number
maxgepmn a(q) where r,(q) denotes the degree of the minimal polynomial of the operator A|,.
Hence, r = n. Remark 3 in [1] shows that the set of points g € M" where r4(g) = n is open
and dense in M". Let us fix a point ¢ where 74 (¢) = n. Proposition 3 and item (2) of lemma 2
(both in [1], section IIIB) give that the restrictions In(k_)1 I, mns - - Iék)|Tq m» are functionally
independent on the fibre T, M" < T M". This completes the proof of theorem 2. U
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